On the Rim Tori Refinement of Relative Gromov-Witten Invariants
نویسندگان
چکیده
We construct Ionel-Parker’s proposed refinement of the standard relative Gromov-Witten invariants in terms of abelian covers of the symplectic divisor and discuss in what sense it gives rise to invariants. We use it to obtain some vanishing results for the standard relative GromovWitten invariants. In a separate paper, we describe to what extent this refinement sharpens the usual symplectic sum formula and give further qualitative applications.
منابع مشابه
On the Refined Symplectic Sum Formula for Gromov-Witten Invariants
We describe the extent to which Ionel-Parker’s proposed refinement of the standard relative Gromov-Witten invariants sharpens the usual symplectic sum formula. The key product operation on the target spaces for the refined invariants is specified in terms of abelian covers of symplectic divisors, making it suitable for studying from a topological perspective. We give several qualitative applica...
متن کاملRelative Parametric Gromov-Witten Invariants and Symplectomorphisms
of the Dissertation, Relative Parametric Gromov-Witten Invariants and Symplectomorphisms
متن کاملAbsolute and Relative Gromov-witten Invariants of Very Ample Hypersurfaces
For any smooth complex projective variety X and smooth very ample hypersurface Y ⊂ X, we develop the technique of genus zero relative Gromov-Witten invariants of Y in X in algebro-geometric terms. We prove an equality of cycles in the Chow groups of the moduli spaces of relative stable maps that relates these relative invariants to the Gromov-Witten invariants of X and Y . Given the Gromov-Witt...
متن کاملHilbert scheme intersection numbers , Hurwitz numbers , and Gromov - Witten invariants
Some connections of the ordinary intersection numbers of the Hilbert scheme of points on surfaces to the Hurwitz numbers for P1 as well as to the relative Gromov-Witten invariants of P1 are established.
متن کاملThe Caporaso-harris Formula and Plane Relative Gromov-witten Invariants in Tropical Geometry
Some years ago Caporaso and Harris have found a nice way to compute the numbers N(d, g) of complex plane curves of degree d and genus g through 3d + g − 1 general points with the help of relative Gromov-Witten invariants. Recently, Mikhalkin has found a way to reinterpret the numbers N(d, g) in terms of tropical geometry and to compute them by counting certain lattice paths in integral polytope...
متن کامل